
P H Y S I C A L R E V I E W V O L U M E 1 3 1 , N U M B E R 5 1 S E P T E M B E R 1 9 6 3 
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Arguments are presented that the single-particle excitations in nuclei induced by inelastically scattered 
electrons dominate the inelastic cross section in large domains of the momentum transfer (q) and the energy 
loss (co). The sum rules for fixed q and co are derived which include the transverse electron-nucleus interac­
tions to order q2/M2 (M being the nucleon mass). The results of the calculations of the inelastic cross section 
for C12 at 0=135° are discussed and compared with experimental data. 

I. INTRODUCTION 

' I VHE inelastic electron scattering from nuclei has 
-»• long been recognized as one of the most direct 

means to investigate the correlations in nuclear matter. 
Although the experimental data are still very scarce, 
there are quite a few theoretical papers on the subject.1,2 

The present paper deals with the region of the inelastic 
cross sections where the scattering from quasifree 
nucleons presumably dominates as has been suggested 
by several authors.1'3-5 This part of the cross section 
(which looks like a big bump on the experimental 
curves) almost exhausts the sum rule for Jo°°do) <r(q,d,u>), 
q, 0, co being the momentum transfer, the scattering 
angle, and the energy loss, respectively. For that reason 
it should be understood first, since any other effects 
(e.g., the high-energy-loss tail due to the short-range 
dynamical correlations2) are small additions to this 
dominant effect. 

There is also another aspect of this problem. If one 
investigates any production process in the field of a 
heavy nucleus [see Fig. 1 (a)], for instance, production 
of fx pairs,6 the Z vertex is the same as in the inelastic 
electron scattering process [Fig. 1(b)]. As long as one 
does not measure all the angles and momenta of the 
particles produced at the left-hand vertex, one can use 
the energy sum rule for the Z vertex (compare Refs. 
6, 1). In any complete measurement, however, where 
all momenta and angles of produced particles are 
measured, one has to use a sum rule for Z vertex for 
fixed q and co. In principle, one could replace the Z 
vertex in Fig. 1(a) by the experimentally measured 
vertex in Fig. 1(b), but this is not an easy task in 
practice and even an approximate formula which takes 
into account the dominant process at Z vertex may 
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prove to be useful in analyzing processes of the 1(a) 
type. 

The formulation of the problem given in Sec. II is 
quite general and, in principle, can be applied both to 
finite and infinite systems provided our complete set 
of states—used to define the single-particle creation 
and annihilation operators and then the charge and the 
current operators [compare Eqs. (10) and (14)]— 
satisfies proper boundary conditions. In the region of 
small energy losses where one detects well-defined 
nuclear levels, the shell-model wave functions seem to 
be the obvious choice for the complete set of states. On 
the other hand, the convenient set of states for calcu­
lating the high-energy-loss tail for large nuclei are 
plane waves (compare Ref. 2). Any other system would 
seem to be much more difficult to handle in this region. 
As we intend to reproduce the experimental curves 
above the region of the excitations of the well-defined 
nuclear levels and in order to have a consistent theo­
retical description of the bump region (considered here) 
and the high-energy-loss tail (considered in Ref. 2), 
we choose the plane waves as our complete set of states 
in the calculations presented in Sec. III. 

II. THE SUM RULES 

Recently, a sum rule has been investigated which 
gives the inelastic electron-nucleus cross section <r(q,a)fl) 
as a product of the Mott cross section and the ground-
state expectation value of the density-density correla­
tion function for the nucleus, provided one includes 
only the longitudinal electron-nucleon interaction. (See 
Ref. 2, henceforth called A.) 

First, we want to generalize the above sum rule. In 
order to simplify the arguments, let us consider the 
electron-nucleus interaction in the first Born approxi­
mation7 correct through order q2/M2. As is shown in 

FIG. 1. (a) Production proc­
ess on Coulomb field of a 
nucleus with Z protons. One 
sums over all nuclear excita­
tions compatible with the mo­
mentum transfer q and energy 
loss co. (b) The corresponding 
inelastic electron scattering. 

(a) 

7 We accept here the point of view expressed in A that the 
breakdown of the Born approximation in scattering from large Z 
nuclei is not a serious obstacle which can be dealt with by the 
methods developed by Schiff (see A for detailed references). 
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Ref. 1, we have (henceforth we follow the notation of 
ReL 1) 

W Fi 

q* 2M 

-[{Fx+KF^/lMliv ( q X « ) M - (q»2/SM2) 

X(F1+2KF2)e
i«^+Z(F1+2KF2)/8M2']i<T 

' { PX (coa— q)g*«M*M— g^%(Wa— q) X p} | «*•), (1) 

where q/=q2—o)2, q is the three momentum transfer, 
co the energy loss, a is the electron Dirac operator, j Ui) 
and \ui) are the free-electron spinors, p and cr are the 
momentum and Pauli spin operators for the nonrela-
tivistic nucleons, F\{q^) and F2{q^) are the standard 
nucleon form factors, and K is the static anomalous 
magnetic moment (in nuclear magnetons). 

We use the following approximation for the nucleon 
form factors: Fip(qli

2) = F2p(qli
2)=f(qfi

2) for the proton, 
and Fin(qi?) = 0, F2n{q2):=f{q2) for the neutron. 

From (1) we get, summing over all nucleons inside 
of the nucleus, the following expression for the transi­
tion matrix element from the ground (energy 220) to 
the excited state (energy En) of the nucleus1: 

|Mno|2==5(co-£n+Eo)(47re2/^2)2/2(^2) 
X | ((uf |Ui)Qn0— (uf\a\Ui)• Jw0) |

2 , (2) 
where 

C»o= (n | Q10) = (n\ £ [>,+ (q2/SM2) fe-2W)>*-"10), 

Jno= <»| J10>= <»| E L(ej/2M)(pje^+e^pj) (3) 

+ 0*y/2Jf)«ryXqe^r ']|O>, 

where |0) and \n) are the nuclear ground and excited 
states, respectively, iy, py, and cry are the position, mo­
mentum, and spin operators for the 7th nucleon. 
Besides, 

M y = K l + T , y ) ( l + ^ ) - J ( l - r , y ) i T = = i ( l + r 2 y ) + r , y i r , 

with i£~1.85, so My reproduces the neutron and proton 
magnetic moments. 

If we square Mno and sum and average over final and 
initial electron spin states, we get 

i E \Mno\2=5(oi-En+E0)(4Te>/qm2(ql?Wn, (4) 
spins 

where 

( l + c o s 0 ) - W n 

= Qn0*Qn0~ ( « / ? ) [ ( $ ' J » 0 * ) e » 0 + e » 0 * ( c 2 - J n 0 ) ] 

+ 1 ( 2 t an 2 j 0+ l ) Jn0*- J n o - i ( 2 t a n 2 ^ + 1 - 3 ^ 2 ) 

X [ ( a - J « 0 * ) ( a - J n o ) - l ( J » 0 * - J » o ) ] , (5 ) 
5 = q/# and 0 is the scattering angle as shown in Fig. 2. 

FIG. 2. Geometry of the elec­
tron scattering, pi, p/ are the 
initial and final electron mo-

1 P f y / N ! menta, respectively. tz and tv 

f / \ are unit vectors. 

ey Pi 

The formula (5) is a starting point for constructing 
the sum rules for the inelastic cross section integrated 
over all energy losses. In fact, Eq. (5) can provide us 
with a formula (see, e.g., Ref. 1 for details and refer­
ences to earlier papers) which gives 

*(q,0) = j duafaqft) (6) 
Jo 

in terms of the ground-state expectation value of cer­
tain nuclear operators. We want, however, to follow 
the approach developed in A and construct the sum 
rule not for <r(g,0), but rather for a(oo,qfl). This can be 
accomplished with the help of the following formula. 
Let ^4(0), B(0) be two arbitrary operators at £=0 of 
the system with a Hamiltonian H such that ^4no*(0) 
X£«o(0) is real (Ano=(n\A\0)). Then the following 
identity holds: 

E S(«-E»+£oM»o*(0)Bn 0(0) 
n 

1 r+«> 1 
= — Im / dt y » «<0| T{Al(t)B(0)} |0>, (7) 

7T J-oo i 

where A^t) = eiHtA^(0)e~iHt and T{--} is the time-
ordered product. If ^4n0*(0)i?no(0) is not real, we can 
see from Eq. (5) that a term -4wo(0)jBn0*(0) is always 
associated with it, so one can work with the real sum 
Ano*(0)Bn0(0)+Ano(0)Bno*(0). Equation (7) is a 
straightforward generalization of the formula (2.18) 
of A (see also Ref. 8). From Eq. (5) we see that W can 
be expressed in terms of the imaginary parts of the 
Fourier transforms of 

(a) density-density correlation function (scalar): 

1 /•+« 1 

X(0\T{QKt)Q(0)}\0); (8a) 

(b) density-current correlation function (vector) : 

1 /•+• 1 
Ri(QJ;qos)=—-Im/ dt-e**' 

x<o|r{/it(og(o)+et(0/KO)}|o>; (8b) 
8 D. Pines, The Many Body Problem (W. A, Benjamin, New 

York, 1961), 
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(c) current-current correlation function (tensor): and J operators: 

1 r+0° 1 
Rn> (JJ; qu) Im / it -e™1 

X ( 0 | T{Jf®Jv®)+Jvi(f)Ji{Q)} |0>. (8c) 

Now we can write Eq. (5) as the ground-state expecta­
tion value and have thus a sum rule for cr(g,co,0). 

From Eq. (7) and Eqs. (8a,b,c), we get 

(l+cosfl)-1 L b(o>-En+E«)Wn 

q i 

+ i E | ( t a j i ^ + J - — V -
iv LA 2q2/ 

+((3a>2 /2^)-tan2 | (9- -h)Mi' \Rw (JJiqu). (9) 

We call R, Ri, Rw the response functions. 
Obviously, if one is interested in the longitudinal 

interaction only (as it is the case in A), one is left with 
the R(QQ; qco) function only. We may emphasize here 
that the sum rule (9) is exact in the sense that no 
approximations are made after the interaction Hamil-
tonian is assumed in the form shown by (1). This is 
not true in the case of the sum rule which gives the 
cross section integrated over energy losses. In order to 
prove this sum rule, one uses the closure approximation, 
and the co and co2 in (5) have to be approximated by 
some (co)av and (co2)av estimated independently (com­
pare Ref. 1). Equation (9) is the starting point of our 
discussion. 

We want to use the second quantization formulation 
in discussing R functions. We choose certain complete 
system of states |a) , where a stands for a complete set 
of quantum numbers for a single nucleon (they may be, 
for example, spin, isospin, angular momentum, and 
energy). For Q and J operators we then get 

Q=*EQ(tf)*a1afi9 J = E J(o0)a«ty,, (10) 
a/9 a/S 

where a Jap are the Fermi particle creation and annihila­
tion operators and Q(a0) and J (a/3) are the matrix 
elements of the single-particle operators which appear 
in Eq. (3). If we choose for a spin, isospin, and momen­
tum, which is the most convenient choice for an in­
finite system, we have the following expressions for Q 

Q=* X) D X) 5s lS25 r iT2 
riT2 8162 k 

*(l+r.) 

D + T . ( 1 + 4 K ) ] \anTf{k+q)asm(k), 
16Af2 

J=ZEE|8 T i r—(2k+q) 
r «i«2 & 

i+K 
(ID 

1 V 

L2M 2M 
-tQs 

K 
—5r_i i&slS2 \anJ(k+q)aS2T(k), 

2M J 

where p= (<rXq)slS2, sh s2 being the z-component spin 
quantum numbers. If we use the reference system shown 
in Fig. 2 with xy plane chosen to be the electron scatter­
ing plane and the spins of the nucleons are quantized 
along the z axis, we get 

- C (qy—iqx)ez, qyex—qxoy 

Hqx)ez\ 

— qxey ) 
(12) 

Now we express all R's in terms of only one two-particle 
Feynman propagator defined as 

Kfafat; t) = (0\T{a^(t)aa(t)aJ(Q)a5(Q)} |0>, 

f*° (13) 
iK(apy5; co) = / dt e^K{afiyb; /) , 

J —00 

namely, 

*(QG;flw)= — I m E Q(a(3)Q*(yd) 
T <*py8 

XK(apy8;u), (14a) 
1 

Rt(QJ; <?co) = — Im E [/i*(a0)e(7&> 

+Q*(aP)Jl(y5)-]K(a(ly8; co) , (14b) 

1 
Rim(JJ;qo>)= — I m E [/!*(o0)/„(7*) 

+Jm*(a(3)Jl(y8)']K(at3y5; co). (14c) 

Formulas (9) and (14) reduce, therefore, the problem 
of calculating the inelastic cross section to evaluation 
of one Feynman propagator K(apy8;a)) and can, in 
principle, be applied to small-energy-loss cross sections, 
where the single-particle or collective levels are excited, 
as well as to large energy losses, where no well-defined 
nuclear states seem to be excited. In fact, a completely 
analogous formulation was used in Ref. 9 to study the 
giant dipole resonance excitation by electromagnetic 
radiation. I ts properties were described in terms of 
properties of K (afiyd; co) propagator. 

» W. Czyz, Acta Phys. Polon. 20, 737 (1961). 
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From Eqs. (9)-(14) one sees that the introduction 
of the transverse interactions does not complicate the 
calculations of the response function in any essential 
way. In the computations of the response function for 
the hard-core gas model (see A) we already had to use 
an electronic computer, so the introduction of the 
known J (a/3) functions given by Eq. (11) and Eqs. (14) 
is not going to cause any serious troubles.10 

III. QUASIELASTIC ELECTRON SCATTERING 
FROM NUCLEI 

In a typical experimentally measured inelastic cross 
section (see, e.g., Fig. 7) we would like to distinguish 
the following three parts of the cross-section curve 
which we shall henceforth call (a), (b), and (c): 

(a) corresponds to the region of co where well-defined 
nuclear levels are excited (small co's); 

(b) corresponds to the region of co where one sees the 
characteristic broad bump (large co's); 

(c) corresponds to the tail of the bump (very large 
co's). 

In A the (c) part was investigated and the conclusion 
reached that it represents the inelastic electron scatter­
ing from fluctuations in the nuclear density distribu­
tion. The calculations of the cross section for the hard­
core Fermi gas model was also given there. In order to 
define precisely the region (c), however, one has to 
understand much better the bump region (b) and the 
purpose of the considerations presented here is just to 
describe that part of the cross section. Even from very 
simple considerations which assume that the nucleus is 
the free degenerate Fermi gas, one finds the existence 
of the broad bump roughly of the right shape (see 
Fig. 8 of A). Starting with this observation, we are 
going to calculate that part of the cross section which 
comes from the sum of all the single-particle excitations 
compatible with the Pauli principle. We believe that 
this is the dominant process in the (b) region. 

One may add here that the calculations of the sum 
rule JlfdwG^wfi) seem to support this point of view 
also. They consistently indicate (see Refs. 1,11, and 12) 
that jQ°°do) a (q,o),6) depends very insignificantly on the 
dynamical nucleon-nucleon correlations, i.e., it is given 
by the properly antisymmetrized shell-model ground-
state wave function. As we expect the dynamical short-
range correlations to contribute as much to the excited 
final states as to the ground-state fluctuations, we con­
sider the small contribution of the ground-state fluctua­
tions, established by the Jo°°do) a (g,co,0) sum rule, as an 
argument in favor of the dominance of the single-
particle excitations in the (b) region, which almost ex­
haust the sum Jl°°do) a(q,o)jd) after all. 

If we accept this point of view, we can picture our 

10 This was pointed out to the author by Dr. A. Goldberg. 
11 S. D. Drell and C. L. Schwartz, Phys. Rev. 112, 568 (1958). 
12 W. E. Drummond, Phys. Rev. 116, 183 (1959). 

q,cu 

^ ^ ~ ^ T \ FIG. 3. The graph which dominates in 
/ \ the big-bump region of the inelastic cross 

/3] fa section. I t amounts to the quasifree 
1 / electron-nucleon scattering. 

— s - — s * \J 
qt<jj 

process by a graph shown in Fig. 3. (For more details 
about these graphs see Refs. 2 and 9.) 

The corresponding expression for ImK of Eq. (13) is 

ImKo(o@y8; co) 

= ««7«/j«»(a)(l-»08))«(co-£(j8)+£(a)), (15) 

where n(a) is the occupation number for the a state. 
If a represents a plane wave with momentum k, n(a) is 
the free-Fermi-gas momentum distribution. 

If we allow for a momentum distribution n(k) and 
the single-particle energies E(k) differ from those of 
the free Fermi gas, we get the formulas which we shall 
call the impulse approximation. Although they do not 
form any consistent approximation to the problem, 
nevertheless, they prove to be useful in various physical 
problems, and we expect them to work pretty well in 
the (b) region of the inelastic cross section. In the im­
pulse approximation, after performation of the sum­
mations and integrations indicated in (11) and (14), 
we get the following expression for the inelastic cross 
section: 

*(q,o>,6) = f(q»2)(~) — - Z K o > - E n + E o ) W n , (16) 
\2piJ sin4|0 n 

where pi is the incident electron momentum and W 
evaluated from (9) gives 

(l+cosfl)-1 £ 5(a>-En+Eo)Wn 
n 

V 
= -—I{A(q,o>)+B(q,o>) tan***}, (17) 

(2x)3 

where V is the volume of the nucleus, 

7 = jfflkn(k)[l-n(.\k+q\)] 

XH«>-E(k+q)+E(k)), (18) 

A(q,w) = 2\l--(-Q1+l\ 

+i[(ra)(1-^)+a'] 
+ — 2.63 + 1 . 7 1 — , (19) 

M2\q } M*\ 

£(? ,« )= (2 /M 2 ){G+5.77 5
2 -0 2 } . (20) 

file:///2piJ
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In (19) and (20) the value #=1.85 was used. 

Q^I-i J d*kn(k)Zl-n(\k+q\)l 

Xkcos4>5(a>-E(k+q)+E(k)), (21a) 

Qi^I'1 ldtkn(k)Zl-n(\k+q\)li 

Xk2 cos2<f>5(a>-E(k+q)+E(k)), (21b) 

G=/-1|iP*»(ft)[l-»(|*+ff|)] 

Xk25(a>-E(k+q)+E(k)), (21c) 

where 0= «£(&,#). E(k) is the energy of a single-
particle excitation as a function of its momentum. The 
volume V in (17) we get from the normalization equation 
which for equal number of neutrons and protons is 

* / . (py 
d°p 

(2T)*/V 
-=2Z. (22) 

In the case of the free Fermi gas, obviously E(k) 
= k2/2M and Oi and £22 are no longer integrals. In fact, 

Oi=0=Mw/g-Jg, a2=&2, (23) 

in this case, and n(k) is the well-known Fermi step 
function. The integrals / and G are easy to evaluate: 

(24a) 

(24b) 

I==Tr(M/q)[kF
2-(Mo>/q-%qy~] for«>o>" 

= 2w(M2/q)o) for«<co", 

G = i i > 2 + (Mo/q-hq)2l f o r «>«" 
= kF

2—Mu for co<co", 

where a)"=qkF/M—q2/2M. For V we get from (17) 

V=3Tr2Z/kF*. (25) 

As we believe that the (b) part of the inelastic elec­
tron cross section is dominated by the quasielastic 
electron-nucleon scattering, the above formulas can 
give us qualitatively the relative importance of the 
longitudinal and transverse interactions. If we nor­
malize the Coulomb contribution to 1, we can write the 
transverse contribution in the form 

Hqp,0)=a(q,a)+P(q,<a)ton*iO, (26) 

where a and 0 are read off (19) 

o> /20 \ 1 r/G \ / o)\ I 

+ 
co2 /O \ 
—(—2.63) 
M2\<7 / 

+ 1.71-
M2\q / if2 

j8 ($,«) = (l/M2)(G+5.77q2-W). 

The a and 0 coefficients are shown in Fig. 4. This is, 

1.5 

1.0 

0.5 

- 0 . 5 

• t . O 

£U5kL,W) 

£(kF,o>) 

^ "M-&; 

FIG. 4. a and /3 coefficients of (26) versus energy loss for two 
momentum transfers q—kF, q—1.5kF, where the Fermi momentum 
kF—280 MeV. The Coulomb contribution is normalized to 1. 

of course, a very crude estimation and gets worse with 
increasing q as our approximate interaction Hamil-
tonian (1) is supposed to work well if q2/M2<^l. Never­
theless, one can see that the transverse interactions are 
very important even for small 6, provided the momen­
tum transfer is of the order of kF. Besides, due to com­
plicated interference effects, a becomes negative for 
large energy losses. As (3 is positive, it results in a 
destructive interference of the transverse interaction 
contributions and for certain 0's we may have only the 
Coulomb interaction contributing. The curves a and /3 
in Fig. 4 stop at a)=a)c=qkF/M+q2/2M, where / , thus, 
the cross section, becomes zero. One can accept, how­
ever, that even for co slightly bigger than a)c, the relative 
importance of the longitudinal and transversal con­
tributions is roughly given by (26). In such a case the 
moral of the present estimation would be that one has 
to include the transverse interactions in any realistic 
calculations dealing with short-range correlations (which 
according to A dominate for co>coc), even in the case 
of small-angle inelastic scattering. On the other hand, 
however, one may again expect for certain angles 6 a 
destructive interference to occur which would make the 
transverse interaction contribution negligible. 

Unfortunately, there is no experimental data on in­
elastic electron scattering from large nuclei which 
would make it possible to confront our impulse approxi­
mation formulas (18)-(21) with experiment. In order 
to see, however, that the (b) region is indeed dominated 
by the single-particle excitations, we compare our im­
pulse approximation cross section with experimental 
data on inelastic electron scattering from C12. For that 
purpose we use the momentum distribution as given by 
the oscillator well model of C12 nucleus, 

n(p) = ll+i(p/po)*y-<p/po)% 

In this case 

v=u*dW)Z-

(27) 

(28) 
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ELASTIC PEAK 80.9 Mev 

p = !80MeV,M = M 
o eff 

w(MeV) 

32 48 64 80 96 112 
ENERGY BELOW ELASTIC PEAK,MeV 

FIG. 5. Comparison of impulse approximation calculations for 
C12 with measurements of Leiss and Taylor (Ref. 3). The energy 
of incident electrons is 80.9 MeV. The scattering angle is 135°. The 
nucleon form factors are taken from Ref. 13. 

The results for E(k) = k2/2M are shown in Figs. 5, 6, 
and 7. The curve begins at w=25 MeV as we want to 
be outside of the region where individual well-defined 
states are seen and our simple mechanism is certainly 
not applicable. Bearing in mind that we have chosen 
plane waves as our basic complete set of states which are 
suitable for nuclear matter calculations rather than for 
small nuclei like C12, the agreement with experiment is 
rather good. We would consider it encouraging to try 
to fit any forthcoming data on the (b) region of the in­
elastic electron cross section from large nuclei in terms 
of single-particle excitations. 

We have also done a bit more realistic calculations 
of the C12 cross sections (Figs. 5, 6, and 7) using the 
root-mean-square radius of C12 nucleus determined by 
the elastic electron scattering13 which gives £o==122 
MeV in (27). Then the introduction of some average 
effective mass of the order 0.7M-0.77M improves con­
siderably the agreement with experiment. Introduction 
of an average effective mass is probably not a bad 
approximation, if w is not too large. For large co's the 
fact that Meu(k) increases with k turns out to be im­
portant, as indicated by the discussion below. Another 
point which one should keep in mind is that although 
the plane waves which we use as the basic complete 
set of states do not seem to be a good zeroth approxima­
tion for a light nucleus like C12, the process of summa­
tion over all numerous possible single-particle excita­
tions may turn out to be rather insensitive to the choice 
of the basic set of states. 

We would like also to point out that the cross section 
at 0=135° and 148.5 MeV of incident electron energy 
(Fig. 7) is sensitive to the assumed magnetic moments 
of the nucleons inside of the nucleus. In fact, the domi­

nant term in (17) is B(q,o)) tan2|0, which depends on K 
roughly like (0.5+K+K2). The cross section is evalu­
ated for i£=1.85 but, e.g., 10% changes in K result 
approximately in 10% changes in the cross section. 

Some general remarks are in order here. As was 
already said, the impulse approximation is not a con­
sistent approximation in general. In the case of infinite 
nuclear matter, however, one can do a better job 
dressing both the particle and the hole lines (see Fig. 3) 
in some more or less consistent way. First, the integrals 
in (17)—(19) now have the form 

Qi= - (TI)"1 Jm 

X 

d3k k cos0 

(29a) 

(29b) 

/ = Iml—fd'kf deGi(k,e)Gi(k+q, e+o>)\ , 
7T [2iriJ J-oo J 

2m J 

/

+00 

rf«Gi(ft,e)Gi(ft+ft «+<o) 
-00 

fl2= - (TJ-/)-1 I m / dzk k2 cos2<£ 

/

+00 

deG1(k,t)G1(k+q,e+u) 
-00 ' 

i f—-/<*•*# 

l2«V 

xf deGi(k,t)Gi(k+q,6+a)\, (29d) 

where Gi(p,e) is the exact one-particle propagator. 
Gi(p,e) has the well-known integral representation (see, 

(29c) 

G=- (TI)~1 Im 
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13 R. Herman and R. Hofstadter, High-Energy Electron Scatter­
ing (Stanford University Press, Stanford, California, 1960). 
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FIG. 6. The same as in Fig. 5, except the incident 
electron energy is 98.0 MeV. 
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e.g., Ref. 14) 

G1(p,e)= I dE- + dE--^ , (30) 
t—E—iri J F.F e—E-\-in\ 

where EF is the Fermi energy. Thus, 

1 ( 1 r* 
- - I m — 

7r I liriJ _0 

deGiikd&ik+q, t+u>) 

= f dE cr+(k+q, E)<r-Qt, E-u). 
J EF 

(31) 

If the independent-particle description of nuclear matter 
is valid in the zeroth approximation (a fact which is 
commonly accepted), <r+ and <r_ are strongly peaked 
(for p>kF and p<kF, respectively) functions of the 
form 

r+ 
a+(p,E)~-

<r-M = 
lE-E(p)J+(*Ty 

(32) 

where T's are small in comparison to \_E—E(p)~] and 
depend, in general, on p and E (see, e.g., Ref. 14). E(p) 
is here the energy of a dressed particle (hole) with 
momentum p and T"1 is its lifetime. Assuming T's 
negligible, we get 

— Im — 
7r 12irij 

deG1(kJe)G1(k+q)e+c^) 

~b[o>-E(k+q)+E(k)~], \k+q\>kF>k. (33) 

Equation (33) essentially reproduces our impulse ap­
proximation, except we cannot now change the mo­
mentum distribution at will, since the exact relation 

nEF 

n(p)^ \ dEa„(p,E) 

tells us that assuming T_ very small we have to have 
n(p) which is virtually the free Fermi gas step function. 
The energy-momentum relation E=E(k), however, can 
be very different from the free-particle one (E=¥/2M) 
as the Brueckner type of calculations show.14 The dif­
ference is usually lumped into the effective mass which 
comes out to be lighter than the free mass and, deep 
inside of the nuclear matter, is presumably Meii 

^0.5M-0.7M. 
The existence of the effective mass results in drastic 

changes of the q, co region where the graph of Fig. 3 

n(k)[_l-n(k+q)l5(co~E(k+q)+E(k))-- dE-

JiiiL. /' | 6 " cm2 \ 
df idw \ sr MeV/ 

ELASTIC PEAK 148.5Mev 
- p =!22MeV,M =M/I.3 

o eff 
- p =122MeV,M *M/I.4 

o eff 

p =180 MeV, M =M 
o eff 
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FIG. 7. The same as in Fig. 5, except the incident 
electron energy is 148.5 MeV. 

dominates. For the free Fermi gas the Fig. 3 graph gives 
no contribution for a)>uc=kFq/M+q2/M and for such 
co's we expect the cross section to be given by the 
scattering of the electron from the dynamical fluctua­
tions of the nuclear matter (see A). We would expect, 
however, that in case of large co one should use the full 
mass of the nucleon only in the particle state (labeled $ 
in Fig. 3), since the particle is well above the Fermi sea. 
For the hole state (labeled a) which is inside of the 
Fermi sea, the effective mass should be used and the 
energy conservation reads 

co=(k+q)2 /2M-kV2ilfeff. (34) 

A straightforward calculation shows us that, for co>6o, 

a>=q2/2AM, AM=M-Me{t. (35) 

We cannot satisfy the energy conservation any more 
because the particles "floating" inside of nuclear matter 
are lighter than the particles lifted far above kF. In 
order to see how important this effect may be, let us 
assume Meff~0.5M and q~kF. Then we get 6o~kF

2/M, 
whereas coc«tJkF

2/ilf. For JfeF«280 MeV, we get £ = 8 7 
MeV and ooc=131 MeV; so the Effective mass effect" 
kills the dominance of the Fig. 3 diagram 44 MeV 
below coc, and anything seen above w would already be 
the scattering from the dynamical fluctuation of the 
nuclear matter (see A). Of course, this is just an over­
simplified example and in more realistic calculations 
one should introduce the F's and use the overlap inte­
gral (31) instead of the conserving energy 5 function 
(33). Then the formulas (16)—(21) can again be used 
to compute the cross section provided we make the 
following replacement: 

r+r_ 
l(E~E(k+q)y+(irT+yX(E~^E(k)y+(irV^ 

(36) 

14 J. Goklstone, in Proceedings of the International School of Physics "Enrico Fermi," 1960 (unpublished); in Nuclear Spectroscopy 
(Academic Press, Inc., New York, 1960), p. 182. 
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We see that the bigger the r ' s , the less pronounced is 
the effect mentioned above. From the known order of 
magnitude of the imaginary part of the optical poten­
tial, one would estimate that co is smeared out over a 
10-20-MeV energy interval. At any rate it seems that 
the optical parameters of the dispersive nuclear medium 
which "dress" the particle and the hole may be as 
important in denning the region of dominance of the 
"quasielastic" scattering as the Fermi momentum h? 
which gives coc (compare A). An alternative way of 
analyzing the (b) region of the inelastic electron cross 
sections would then be in terms of the replacement 
(36), where the E(k) function could be taken from a 
Brueckner type of calculation and r ' s left as free pa­
rameters. In any case, the above considerations indicate 
that the measurements of the (b) region give a direct 
access to the otherwise hard to measure functions E(k). 

CONCLUSIONS 

(1) The paper presents arguments that in the region 
of a big bump in the inelastic electron-nucleus cross 
section the graph shown in Fig. 3 (i.e., quasielastic 
scattering) dominates. 

(2) The sum rule including all the transverse inter­
actions to order q2/M2 is given. The importance of the 
transverse interactions is estimated and found im­
portant for q and co of order kp and EF, respectively. 

(3) From the example of inelastic scattering from C12 

nucleus at 6= 135°, one sees that a very large percentage 
of the cross section is due to the magnetic moments of 
the nucleons inside of C12 nucleus. The cross section 
for large q's (Fig. 7) is very sensitive to the magnitude 
of the magnetic moments. Figure 7 shows the agree­
ment with experiment for very reasonable values of 
Meit and po and for magnetic moments equal to those 
of the free nucleons. So, one may conclude that the 
magnetic moments of the nucleons inside of nuclei 
cannot be appreciably different from the free nucleon 

ones. Unfortunately, this argument is not model-
independent. 

(4) There exist some complicated interference effects 
between different parts of the transition amplitude 
(longitudinal-transverse, transverse-transverse). There 
are regions of the q, co plane where they act construc­
tively and regions where they act destructively (com­
pare Fig. 4). Consequently, for certain angles 6 the 
transverse effects cancel almost completely and only 
the Coulomb interaction contributes. 

(5) In order to define precisely the region of the q, co 
plane where the dynamical correlations dominate, one 
has to study extensively, both experimentally and theo­
retically, the bump region. The finite size effects are not 
the only ones which make the estimations based on the 
free Fermi gas model unreliable (compare A). In this 
paper, it is argued that the dispersive effects of the 
nuclear medium are also very important in defining 
that region. In particular, the shape of the bump (e.g., 
the position of its maximum) depends on the energy-
momentum relation E(k) of the single-particle excita­
tions. Thus, the analysis of the forthcoming experi­
mental data on the inelastic electron scattering will 
presumably give a direct access to the otherwise hard 
to measure function E(k). 
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